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INTRODUCTION

Protein–protein interactions (PPIs) are central to understanding how
cell functions are integrated. At this point, scientists have deciphered a
well-developed theory that explains the physical and chemical forces that
underlie the noncovalent chemistry of PPIs. Electrostatic, dipole–dipole,
van der Waals forces are well quantified into accepted force fields such as
AMBER that are used for protein structure determination by NMR, mod-
eling of macromolecules, refinement of X-ray structures, macromolecular
dynamics, and drug design.1–3 A more recent knowledge base of PPIs has
emerged from the growing number of PPI databases built upon data
largely from high-throughput techniques such as yeast two-hybrid screens
and tandem affinity purification/mass-spectrometry analysis, as well as
manual curation of the scientific literature. Collectively BIND, DIP, Bio-
Grid, IntAct, MIPS, MINT, HPRD, the YPD and others contain several
hundred thousand PPIs.4–8 Despite these efforts, we are yet to develop a
comprehensive enumeration of PPIs.

One of the major efforts addressing the development of a theory that

reliably predicts new PPIs is that of minimotifs (also called short linear

motifs or SLiMs), which bind to protein domains and provide a key con-

nection of the physical and chemical forces with the large PPI data sets.

Minimotifs are contiguous peptide elements in proteins, generally less than

15 residues in length that have a defined function. One class of functions

includes binding minimotifs such as those that engage SH2, SH3, PDZ,

and a number of other modular protein domains.9 These minimotifs are
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ABSTRACT

Protein–protein interactions are important

to understanding cell functions; however,

our theoretical understanding is limited.

There is a general discontinuity between

the well-accepted physical and chemical

forces that drive protein–protein interac-

tions and the large collections of identified

protein–protein interactions in various

databases. Minimotifs are short functional

peptide sequences that provide a basis to

bridge this gap in knowledge. However,

there is no systematic way to study mini-

motifs in the context of protein–protein

interactions or vice versa. Here we have

engineered a set of algorithms that can be

used to identify minimotifs in known pro-

tein–protein interactions and implemented

this for use by scientists in Minimotif

Miner. By globally testing these algorithms

on verified data and on 100 individual

proteins as test cases, we demonstrate the

utility of these new computation tools.

This tool also can be used to reduce false-

positive predictions in the discovery of

novel minimotifs. The statistical signifi-

cance of these algorithms is demonstrated

by an ROC analysis (P 5 0.001).
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of known molecular function and are distinct from de

novo prediction of motifs by several approaches including

MEME, Gibbs Sampler, PRATT, TEIRESIAS, D-MOTIF,

and other algorithms.10–14

While some PPIs involve extensive surface contact, PPIs

driven by minimotifs are generally simpler, with a reduced

surface of contact. Analysis of minimotif-driven PPIs sim-

plifies the problem of theoretically predicting new PPIs by

limiting the residues that need to be considered. In general,

minimotifs are identified by studying sequences of a collec-

tion of instances that are known to interact with a protein

or by analysis of the permutational space of each position in

a peptide sequence that can bind to a domain by phage dis-

play, screening random peptide libraries, SPOT peptide

arrays, or site-directed mutagenesis. Most often interpreta-

tion of this data reduces the series of instances down to a

consensus minimotif that accounts for degeneracy at each

position. Alternatively, degeneracy and variation can be

quantitatively represented in a position specific-scoring ma-

trix (PSSM), which has the advantage that it captures the

probability of the collection of instances for each position.

Consensus sequences and PSSMs have some predictive

value but have limitations. While high-throughput experi-

mentation has helped us to begin to understand some of

the specificity determinants of many minimotifs, sequence

alone is not an accurate predictor of novel minimotif

instances and does not, by itself, account for the higher

degree of specificity observed in minimotif-driven PPIs.

There has been much effort to increase the specificity

of and reduce false-positive minimotif predictions.15–19

In the Minimotif Miner (MnM) application for predict-

ing minimotifs, three approaches can be used: frequency

analysis relies on the simple premise that minimotifs with

more complex definitions are less likely to have false-posi-

tives.15,16 Since minimotifs must be on the surface of a

protein, a surface prediction algorithm can be used to mini-

mize the prediction of buried minimotifs. Likewise, those

minimotifs that are conserved in different species provide

another measure to reduce false positives. Another major

minimotif database, eukaryotic linear motif (ELM) server

utilizes different filters that are complementary to

MnM.17,18 A cell compartment filter identifies minimotifs

in appropriate cellular compartments, while a globular do-

main filter can be used to restrict predictions to intrinsically

disordered regions. ELM uses taxonomy in a different way

than MnM to identify minimotifs in organisms with a con-

served minimotif partner. ELM also has a surface filter and

a secondary structure prediction filter.

In MnM a query protein (minimotif source protein) is

entered and, in part, the sequence is analyzed for minimo-

tifs that encode putative interactions with target proteins.

Each query generally produces many target predictions;

however, like other minimotif prediction programs, there

is a relatively high number of false-positive predictions. To

address this limitation, we have now adapted a concept

previously used to identify novel minimotifs.19 Neduva

and Russel19 examined sets of protein–protein interactions

to identify proteins that interacted with a common target

protein and shared a unique minimotif signature.

Here, our goal was to engineer a new tool that would

have two principle uses: (1) it would improve prediction of

new minimotifs in MnM, by reducing the false-positives

predictions. A filter would restrict the target predictions to

those proteins where the minimotif source protein and the

target protein are already known to interact. We imple-

mented several strategies to modulate filter stringency. (2) It

can be used to facilitate the study of PPI theory by identify-

ing minimotifs between two proteins that are already known

to interact, but the interface is not yet known. For example,

in an example analysis of discs, large homolog associated

protein (DLGAP-1, NP_075235) Minimotif Miner predicts

123 potential binding motifs; however, only two are previ-

ously known to have a known protein–protein interaction.

Thus, using PPIs reduced the number of minimotif predic-

tions. In the second application mentioned earlier, an exam-

ple analysis of DLGAP-1 shows that it contains PxxPxK and

YxxP minimotifs. These minimotifs are known to bind to

the SH3 and SH2 domains of Crk, respectively.20 A pro-

tein–protein interaction of DLGAP1 with Crk was previ-

ously identified by an array screen of SH3 binding motifs

that included Crk peptides.21 Thus, two mechanisms for

this PPI are now suggested.

METHODS

Protein–protein interaction filters

To refine minimotif predictions using known PPIs, we

first needed sources of protein–protein interaction data.

The minimal PPI data we need is two interacting pro-

teins with accession numbers. We accepted the limitation

that some protein–protein interaction databases may

contain data with a low intrinsic false-positive rate, con-

taining a few incorrect or artifactual interactions. We

selected six databases primarily based on the public avail-

ability, amount of data, and reliability of the data. The

Database of Interacting Proteins (DiP), Entrez Gene,

Human Protein Resource Database (HPRD) release 8,

Molecular Interaction database (MINT) release 2.5,

VirusMINT and IntAct contain protein–proteins interac-

tions annotated from the literature or derived from

experimentation.5,22,23 Statistics for these databases are

provided in Table I.

Collectively, these databases have >785,000 total inter-

actions. The total number of nonredundant interactions

is likely more similar to the 322,579 unique PPIs consoli-

dated in the Agile Protein Interaction DataAnalyzer.8

Annotation of minimotifs

All minimotifs in the Minimotif Miner database were

curated from the literature and have supporting
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experimental evidence.15,16 The data was refactored into

a new data model.24 The basic elements of this model

have a ‘‘motif source,’’ which contains the Minimotif, a

‘‘target,’’ which engages the Minimotif, and an ‘‘activity’’

which describes the function outcome of the minimotif

source engaging its target. To use this information for

the computational PPI filters, we examined the references

for all 5313 minimotif definitions and assigned accession

numbers to the majority of Minimotif sources and tar-

gets. In a few cases the accession number could not be

assigned for one of two reasons: (1) an unambiguous

assignment could not be made based on the information

in the paper or in referenced material, or (2) if the

minimotif source was identified in a phage display, or

peptide-based screen then there is no assignment of an

accession number.

Protein–protein interaction filtering
algorithms based on homology and similarity

We designed several protein–protein interaction filter-

ing algorithms that could be compared for their utility in

refining minimotif definitions. The basic algorithm is as

follows: For the purpose of describing these algorithms,

let p be the putative minimotif, let S be its source pro-

tein, and let T be the target protein which interacts with

the source protein that contains p as previously described

in our model of minimotifs.24 Each PPI pair will be

assigned to (A, B) and (B, A) where A and B are pro-

teins, thus there are two assignments to (S, T) for each

PPI. Then each database is searched for an exact (S, T)

match. This filter is designated the ‘‘PPI-filter.’’

The source of minimotifs for this analysis will be the

minimotif miner (MnM) database, which has over 3000

minimotifs for protein–protein interactions and is mod-

eled with pairs of minimotif source and target proteins

(S, T).15,16 To use MnM for this filter, we annotated

both source and target accession numbers for all of the

�3000 PPI minimotifs that could be unambiguously

assigned.

Several studies suggest that the minimotifs that drive

PPIs are often conserved between species.25–27 There-

fore, we designed an extension of the above protein–pro-

tein interaction filter, designated the ‘‘HomoloGene-PPI’’

filter that uses the HomoloGene database to extend PPI

predictions into other species. HomoloGene is a data-

base, which clusters paralogues and orthologues into

gene families.28 For a given (A, B) pair in a PPI data-

base, we can assign (Ai, Bi) and (Bi, Ai) to (Si, Ti), where

i indicates a species. We examine HomoloGene clusters

for Si and then match the species to Ti, which evaluates

both proteins of a (A, B) pair. Using this approach, we

can now expand the number of PPI interactions based

on the assumption that the interactions are conserved in

orthologues and paralogues across species and taxa.

While the HomoloGene-PPI filter assesses conservation

in orthologues and paralogues, minimotifs may also be

conserved in a broader range of homologues. For exam-

ple, a PxxP minimotif is likely to bind to many of the

100’s of SH3 domains present in different proteins, even

if the proteins are homologues in the same species. To

develop this ‘‘Similarity-PPI’’ filter, we used all the pro-

tein–protein interaction databases. Each protein in these

databases was used to form a cluster using BLAST.29

Each cluster will have proteins with sequence similarity.

By varying the threshold cutoff value in the BLAST anal-

ysis, we generated clusters with different stringency. We

refer to these versions of PPI databases as Extended-PPI.

A pair in the extended-PPI is of the form (A, B0) or (A0,
B) where A and B are proteins and A0 and B0 are protein

clusters. In the Similarity-PPI filter, for any given source

target pair (S, T), all the entries in the database are

examined to identify interacting protein-protein pairs (S0,
T0) where S0 is similar to S and T0 is similar to T. A

pseudocode for the detailed algorithm is given in the Ap-

pendix. To reduce false positive predictions of PPIs by

this approach, we optionally enforced the additional con-

straint that S0 should contain p, the putative motif.

ROC curves

Relative operating characteristic (ROC, also named re-

ceiver operating characteristic) curves are commonly

used to evaluate the sensitivity and specificity of

Table I
Sources of Protein–Protein Interaction Data

Database
No. of

interactions
No. of
proteins

No. of
species Data source Reference

Date
downloaded

DiP 57,683 20,728 274 Literature curation 37 Aug., 2009
Entrez Gene 387,159 19,205 Unknown Linkout databases 38 Sep., 2009
HPRD 38,806 27,081 1 Yeast 2-hybrid, in vitro or

in vivo experiments,
proteinpedia

39 Aug., 2009

MINT 83,321 29,774 Unknown Literature curation 40 Jun., 2009
Virus MINT 1,854 468 99 Literature curation 23 Nov., 209
IntAct 216,394 63,654 Unknown Experiments 22 Jun., 2010
Totala 785,217

aTotal does not consider that different databases may use different accession numbers for the same protein.
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algorithm performance and were used to evaluate the

PPI filters. We used the R project software suite to com-

pare ROC curves of the PPI filter with the frequency

score filter used on the MnM website.30 In the R pack-

age, the area under the curve (AUC) is calculated follow-

ing Mason and Graham’s methods.31 The ROC area can

be interpreted as re-parameterized forms of the Mann–

Whitney U-statistic.32 The statistical significance (P-

value) of the ROC area is calculated from the Mann–

Whitney U-distribution. In this article, AUC and P-values

are calculated based on empirical curves. We have com-

pared the empirical curves to a ROC curve fit with a

binormal function, which assumes that the positive data

follow a normal distribution. The robustness of binormal

model shows high similarity with experimental curves,

even when the data follow some other distribution.33

RESULTS

Evaluation of protein–protein
interaction filters

We wanted to create a set of filters that reduce the num-

ber of false-positive minimotifs predicted by Minimotif

Miner. Given a query protein, we plan to use PPI filters to

restrict these predictions to those that are previously known

to have a PPI. We also generated and tested less stringent

versions of these filters (PPI-HomoloGene, and PPI-Simi-

larity). The PPI, PPI-HomoloGene, and PPI-Similarity

filtering algorithms were evaluated using the Minimotif

Miner 2 (MnM2) database. MnM2 has 2941 PPI minimotifs

where accession numbers for both the minimotif source

protein (that contains the minimotif) and the target protein

(that binds to this minimotif) are known. We used two met-

rics to evaluate the success of these filters.

To assess sensitivity of these filters, the percentage of

protein pairs that were identified in both a PPI database

and MnM database was computed. This percentage met-

ric can be thought of as the sensitivity of the algorithm

filter with higher percentage recovery representing higher

sensitivity.

We also wanted to test the selectivity of each filter for

true minimotifs. We randomly selected 100 proteins to

be processed using MnM. Let A be one such query pro-

tein. A list L of putative minimotifs identified by MnM

was collected. Let r be an entry in L. Let the target pro-

tein for the r motif in A be T. We sent (A, T) to the PPI

filter and checked if this pair will pass the filter (that is,

we sent a minimotif-containing protein and an interac-

tion partner predicted by MnM into the PPI algorithm).

We did this for every element in L generated by MnM

for the 100 randomly picked proteins. As a result, we

computed the percentage of minimotifs (r0s) known to

mediate binding with targets (T0s) contained in the 100

proteins (A0s). This is the percentage of interactions (A,

T), which passed the filter. We refer to this percentage as

the selectivity of the filter; lower numbers indicate more

selectivity for valid minimotifs. We use the ratio of sensi-

tivity/selectivity as a single metric called discrimination

ratio (DR) that evaluates the success of the filter.

Since we did not know the redundancy and coverage of

each PPI database, the PPI-filter was evaluated for each of

the PPI databases (Table II). The results obtained for

MINT, HPRD, and Entrez Gene database showed that

many PPIs were also present in MnM; whereas few were

identified in a set of randomly synthesized PPI interacting

pairs; this is reflected as higher sensitivity. Collectively,

58% of minimotifs had a PPI in at least one of the six PPI

databases examined. We compared the results of the filter

using MINT, HPRD, and Entrez Gene databases with a set

of randomly synthesized PPI interacting pairs. Overall,

integration of all six PPI databases yielded the highest

overall Discrimination Ratio of 31 (higher scores indicate

better performance), revealing the effectiveness of this filter

and suggesting that when applied to novel queries this fil-

ter would help to reduce false positive predictions.

We next evaluated the HomoloGene-PPI filter to deter-

mine if extending the sets of PPIs to include orthologues

and paralogues reduces the stringency of the PPI filter. The

HomoloGene-PPI filter did not produce any significant

increase in sensitivity when the MnM data set was ana-

lyzed; however, there was a modest reduction of selectivity

reducing the Discrimination ratio score when compared to

the PPI filter (Table III). The reason that the Homolo-

Gene-PPI did not yield major improvements is likely

because there are few minimotifs in the MnM data set

where a minimotif in an interaction is defined for more

than one species. Although this algorithm did not improve

results in analysis of the MnM data set, we can envision sit-

uations where this filter is valuable as shown applying this

filter to a test case in the next section.

To further reduce stringency of the PPI filter, we created

and tested the Similarity-PPI filter, which uses BLAST

instead of HomoloGene clusters to identify proteins with

sequence similarity. The BLAST threshold used to identify

similar proteins was varied and the performance of this

Table II
Evaluation of the PPI Filter

Sensitivitya

(%)
Selectivityb

(%)
Discrimination

ratioc

DiP 1.6 0.0 x
Entrez Gene 40.7 3.3 12.5
HPRD 31.0 2.7 11.6
MINT 41.2 1.5 27.7
VirusMint 0.2 0.0 x
IntAct 7.4 0.7 11.4
At least oned 61.6 2.1 29.3

a‘‘Sensitivity’’ refers to the percentage of positive instances that are accepted by

the filter.
b‘‘Selectivity’’ refers to the percentage of negative instances accepted by the filter.
c‘‘Discrimination ratio’’ is sensitivity/selectivity.
d‘‘At least one’’ refers to a minimotif that was identified in at least one of the PPI

databases listed in this table.

S. Rajasekaran et al.

156 PROTEINS



filter was assessed as for the other filters (Fig. 1). The dis-

crimination ratio (sensitivity/selectivity) correlated posi-

tively with increasing BLAST scores, indicating that the

more stringent the sequence similarity, the better the filter

performance. The discrimination ratio was better than

that of the HomoloGene-PPI filter when BLAST thresh-

olds above 20 were used.

Better selectivity scores were obtained when using high

BLAST thresholds with the Similarity-PPI filter. With

BLAST thresholds of 10 and 20 we observed increases in

sensitivity as well as less stringent selectivity. However,

the gains in selectivity were not sufficient to improve the

overall DR. This was expected when a wider breadth of

homologues is selected with lower BLAST scores selectiv-

ity should become worse. The potential use of this filter

is that it is capable of generating broader (albeit less

stringent) predictions of minimotifs than either of the

PPI and HomoloGene-PPI filters.

An ROC curve was used to assess the Similarity-PPI filter;

the underlying variable parameter was the BLAST score.

Note that for PPI-filter and HomoloGene-PPI filter there is

no such parameter and hence ROC curves are not relevant.

This ROC curve (Fig. 2) clearly demonstrates the statistical

significance of our algorithm. The area under the curve is

0.9 and the P-value is 0.001. Note that the P-value corre-

sponds to the probability that a random predictor (i.e., filter

algorithm) will produce the same results as our algorithm.

We also wanted to compare the performance of our algo-

rithm in relation to the existing frequency filter of MnM.

The frequency score filter scores minimotifs based on the

amino acids in the minimotif sequence definition and the

frequency of these amino acids in the proteome.15 The area

under the ROC curve for the frequency filter is 0.7, and the

P-value is 0.08 (Fig. 3). Comparison of ROC curves for the

two filters shows that the PPI filter has a better performance

than the previously reported frequency score filter.15 Table

IV compares these two filters on many parameters of inter-

est. In this table, n.total is the total number of tests, n.events

is the total number of tests on true data, n.noevents is the

total number of tests on random (negative) data.

The other principle goal was to identify minimotifs that

are present in one of two proteins known to interact. By

using any of these filters on the MnM website users can

enter a query protein and use MnM to find a minimotif

that potentially drives the mechanism of the interaction.

Examination of Grb2 using PPIs

To further test the different PPI filters, we examined

growth factor receptor binding protein 2 (Grb2) as an

Table III
Evaluation of the HomoloGene-PPI Filter

Sensitivitya Selectivitya Discrimination ratioa

DIP 1.9 0 x
Entrez Gene 44.7 3.5 12.7
HPRD 33.3 2.7 12.2
MINT 41.2 2.4 17
VirusMint 1.5 0 x
IntAct 8.3 1.2 7
At least oneb 63.7 5.1 12.5

aMeasurements in column are as defined in Table I.
b‘‘At least one’’ refers to a minimotif that with a source and target that matched

in at least one of the PPI databases listed in this table.

Figure 1
Evaluation of the BLAST threshold used to create extended-MINT in the

Similarity-PPI filter. The Similarity-PPI filter was applied to various

datasets and sensitivity, specificity, and the discrimination ratio were

measured and plotted. Different datasets were created using BLAST to

identify proteins with sequence similarity; the BLAST threshold was varied.

Figure 2
ROC curve for Similarity-PPI Filter. ROC curves for the Similarity-PPI

curve were generated with the R project software package. The empirical

curve (black) and binormal curve (red) are shown. The binormal curve is

calculated based on the assumption that the data is from a normal

distribution. The area under the empirical curve is 0.9 (P 5 0.001).
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example minimotif source query. Grb2 is an adaptor pro-

tein involved in receptor tyrosine kinase signaling that

has many known protein interaction partners, thus pro-

vides a good test case. We analyzed Grb2 proteins from

human, mouse, rat, and fly and indicate the percentage

of the minimotifs that pass the filter (Table V). With the

PPI filter 36% of the predicted minimotifs for human

and 13% of rat Grb2 had previously known interactions;

fly and mouse Grb2 has not reported minimotifs with

known PPIs in the MnM database. The PPI filter would

provide benefit to users by allowing selection of known

minimotifs and predicted minimotifs for many human

and rat Grb2 PPIs.

If two proteins are known to interact in human and rat,

as in the case for Grb2, then it is reasonable to assume that

they also interact in mouse and perhaps also in fly. When

we analyzed the same Grb2 proteins with the HomolGene-

filter, 10 and 7 minimotifs in mouse and fly Grb2, respec-

tively, now passed the filter whereas none had passed the

PPI filter (Table V). Although the HomoloGene-filter algo-

rithm showed no distinct advantage when globally applied

to MnM data, it is clear for the case of Grb2 that the filter

worked as designed by extending minimotif predictions to

proteins in other species.

We next examined the Similarity-PPI filter on the

Grb2 proteins using different thresholds in BLAST to

cluster proteins. Higher BLAST scores indicate more

stringent protein similarity. Even when the highest

BLAST threshold of 200 was used, we observed signifi-

cantly more minimotifs passing the Similarity-PPI filter

(Table VI). This result is consistent with more homo-

logues being present in each protein cluster. As expected

for all four species examined lower BLAST thresholds

produced more predictions and the profiles were consist-

ent with the variation in sensitivity, selectivity and score

observed with when the BLAST threshold was titrated as

shown in Figure 1.

Since the percentage of minimotifs was higher than

expected for the Grb2 proteins, even at the highest

BLAST threshold we implemented the additional con-

straint that Si should contain pi, the putative minimotif.

Results from this algorithm shown in Table VII show

that in all cases less minimotifs passed the filter than

when there was no requirement for the presence of the

minimotif in the Similarity PPI filter.

We wanted to develop a better feel for results we

would obtain with a novel protein query. We randomly

selected 100 proteins from the RefSeq database ((growth

associated protein 43), CD2, DYRK1A, TRPM6, IRS-1,

Figure 3
ROC curve for Frequency Score Filter. The Frequency Score Filter

previously implemented in MnM was analyzed and an ROC curve was

plotted for the sensitivity and specificity of the filter by varying the

frequency threshold. Curves are as in Figure 2. The area under the

empirical curve is 0.7 (P 5 0.08). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Table IV
Comparison Between Filters Based on ROC Curves

PPI filter Frequency score filter

Areaa 0.9 0.7
n.totalb 22 16
n.eventsc 11 8
n.noeventsd 11 8
P-value 0.001 0.08

aArea is the area under the ROC curve.
bn.total is the number of tests.
cn.events is the total number of tests on true data.
dn.noevents is the total number of tests on random (negative) data.

Table V
Percentages of Minimotifs in Grb2 that Pass Different PPI Filters

Grb2a PPI filter (%)b HomoloGene-PPI filter (%)b

Human 36 36
Mouse 0 10
Rat 13 13
Fly 0 7

aGrb2 proteins from different species were analyzed with the PPI and Homolo-

Gene-PPI filters.
bThe percentage of minimotif predictions that pass the filter.

Table VI
Percentages of Minimotifs in Grb2 that Pass the Similarity-PPI Filter

Grb2a

BLAST score thresholdb

10 20 30 40 50 100 150 200 500 1000

Human 74 63 61 59 55 55 55 55 55 55
Mouse 61 43 30 30 28 20 20 20 20 20
Rat 64 48 37 37 35 31 31 31 31 31
Fly 61 50 28 28 25 19 19 19 19 19

aAnalysis as in Table V except that the Similarity PPI filter was used and BLAST

threshold was varied to created different PPI datasets for the analysis.
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etc.) and analyzed them with Minimotif miner using the

Similarity-PPI filters with different BLAST thresholds.

When the homology filter was used with a promiscuous

BLAST score threshold of 10, no predicted minimotifs

were eliminated, whereas when stringent BLAST thresh-

olds of 500 or 1000 were used, only 11% of the predic-

tions were selected by the filter as having a previously

known interaction in a related protein (Table VIII).

Thus, a wide range of filtering was observed. The results

are shown in the Appendix in a series of Tables.

We examine the putative minimotifs that were retained

by the Similarity-PPI filter by examining IRS-1 target

predictions. Several previously known interactions with

IRS-1 were retained by the filter (Grb2, PI3K, insulin re-

ceptor, and epidermal growth factor receptor). In addi-

tion, a number of proteins with a related signaling func-

tion were also retained (Integrin, PTPN11, Fyn, Crk,

Casein Kinase 2, and JAK2). These results indicate that

the filter selects known positives and also identifies rea-

sonable candidates for novel minimotif driven protein–

protein interactions.

Adapting the Minimotif Miner 2 user
interface to include PPI algorithms

To provide an interface for scientists to use the PPI fil-

ters, we added the PPI filter section to the Minimotif

Miner 2.0 web application (Fig. 4). This filter section

contains PPI, PPI-HomoloGene, and PPI-Similarity fil-

ters; BLAST thresholds of 10, 20, 30, 40, 50, 100, 150,

200, 500, and 1000 are available for the PPI-Similarity fil-

ter. For each filter, options to use the filter, examine and

select motifs retained or eliminated by the filter are avail-

able. The PPI filters can be used in combinations with

other minimotif scoring metrics. Furthermore, in addi-

tion to searching for minimotifs with previously known

PPIs, the user can use the exclude option to also identify

minimotifs that do not have a previously known PPI.

Figures 5 and 6 show screen shots of the MnM website

with and without the PPI filter; 48 of 75 minimotif pre-

dictions were eliminated by the filter in this analysis of

acyl-CoA dehydrogenase.

The minimotif results table has also been modified to

make each score column sortable by clicking at the top of

the column. This will better allow users to select the crite-

ria they want to use to filter out false-positives or to focus

their search. The MnM help section has been updated to

help users with the new filter and reporting functions.

DISCUSSION

In developing a theory of PPIs, scientists have made sig-

nificant progress in understanding the physical forces that

drive chemical interactions and also have generated large

datasets of known PPIs. Minimotifs can drive protein–pro-

tein interactions, thus provide a simplified system in which

we begin to develop a protein–protein interaction theory.

Currently, there are no broad based tools with which a

scientist can systematically search for protein–protein

interactions that have minimotifs, an important tool for

investigating the role of minimotifs in PPI theory. For

example, if two proteins are known to interact, then

identifying a minimotif in one that mediates an interac-

tion with the other protein in the protein complex helps

users formulate a hypothetical mechanism of the interac-

tion. Since minimotif prediction has a high false-positive

rate, this tool would have a second use in reducing false

positives in the prediction of new minimotifs.

To address these problems, we have built several differ-

ent PPI filters and implemented them in the Minimotif

Miner 2 website.16 In building the PPI filters, we exam-

ined PPI data from existing PPI databases. When com-

paring the PPIs in the MnM database with known PPI

databases that collectively have more than 500,000 inter-

actions, we noticed that �40% of the interactions in the

MnM database were not yet observed in other PPI data-

bases. Since the MnM annotation is a completely inde-

pendent literature curation effort, this suggests, that even

collectively the other existing PPI databases are not yet

comprehensive for all PPIs reported in the literature.

In using the PPI filter, there was a strong preference

for minimotifs being in protein with known PPI rather

than randomly generated PPIs. In the example analysis of

Table VIII
Analysis of 100 Random Query Proteins with the Similarity-PPI Filter

in MnM

Blast score
thresholda

No. of not
removed by filtera

Removed by
filter (%)a

10 4658 28
20 2133 54
30 904 80
40 668 86
50 550 88
100 396 91
150 347 93
200 347 93
500 274 94
1000 274 94

aAnalysis as in Table VI except on 100 randomly selected proteins.

Table VII
Percentages of Minimotifs in Grb2 that Pass the Similarity-PPI Filter

that Contain the Predicted Minimotif

Grb2a

BLAST score thresholda

10 20 30 40 50 100 150 200 500 1000

Human 55 44 42 36 36 36 36 36 36 36
Mouse 61 43 30 30 28 20 20 20 15 7
Rat 55 40 28 28 26 22 20 20 15 13
Fly 61 50 28 28 25 19 19 19 17 5

aIn Analysis, as in Table VI except the additional constraint that Si should contain

pi, the putative minimotif was implemented.
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Grb2, 15 of the predictions with MnM that passed the

PPI filter involved predictions that were not previously

known to occur by the proposed mechanism. For exam-

ple, several of the proteins that both interact with Grb2

and have a SH2 domain that binds to a consensus

sequence that is consistent with a minimotif in Grb2 are

Rasa (Y[ILV]x[FPYW]), Shp-1 (Y[IV]x[ILPV]) bLnk

(Yxx[ILMP]), and Crk (YxxP). These proteins are pre-

dicted to bind at Tyr 209 near the end of the C-terminal

SH3 domain of Grb2. Grb2 is also tyrosine phosphoryl-

ated on Tyr 209 (Human Protein Reference Database;

HPRD), a requirement for these SH2 interactions.34,35

Examination of the structure of Grb2 (1GRI) shows that

these minimotifs are on the surface and available for

binding. Considering these data we can generate several

new hypotheses for the mechanisms by which these pro-

teins interact with Grb2, which is not yet known.

PPIs are very often conserved between similar species and

are often conserved over a wider taxonomical range.36 This

is especially true in mammals where orthologous proteins in

different species (which often have >90% amino acid iden-

tity) are inferred to have conserved interaction partners and

minimotifs. The PPI-HomoloGene filter was designed to

take advantage of PPI conservation, but did not show any

improvement in discrimination ratio on the MnM data set

when compared to the PPI filter; in fact it dropped signifi-

cantly. We propose that this is due to that fact that most

data in the MnM database does not have that same minimo-

tif annotated for different species. This was supported by

our analysis. The obvious need for this filter was evident in

the analysis of Grb2. In Grb2, if one was studying a human

protein 50% of the predictions pass this filter. This reflects

that most work on Grb2 in the PPI databases was done in

human and rat proteins. However, there were no proteins

Figure 4
Image of filter selector and results modification added to the Minimotif Miner 2 web application. The category filters in the protein–protein

interaction section was added for this article. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5
Screenshots of Results table in MnM. Image of restuls table from an MnM analysis of acyl-CoA dehydrogenase (NP_000007). MnM returns 75

minimotifs predictions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Improving Minimotif Predictions

PROTEINS 161



that passed this filter in mouse and fly orthologues. Since

the domains and minimotifs are well conserved, we expect

that any interaction observed in human and rat would likely

also be observed in mouse, and likely fly orthologues. Thus,

despite the poorer global performance of the PPI Homolo-

Gene filter, it is clear that at least in isolated cases, it will be

valuable to those studying PPIs and minimotifs.

Our initial implementation of the Similarity PPI filter

showed that more minimotifs passed the filter than expected,

even when high BLAST thresholds were used. This was not

observed in the global analysis of the MnM data. Therefore,

to adjust the stringency of this filter we provide users the

option to use a wide range of BLAST thresholds, so that the

number of resulting minimotifs can be adjusted on a case by

case basis if desired. The related ROC curve and the P-value

indicate that our algorithm is highly statistically significant.

A comparison of the Similarity PPI filter with the previously

reported frequency score filter indicates that the Similarity

PPI filter is more significant statistically.15

In summary, the PPI, PPI-HomoloGene, and PPI-Sim-

ilarity filters provide new computational tools to study

the mechanisms of PPIs and to reduce false-positive pre-

diction in the discovery of novel minimotifs.

For further details please see http://mnm.engr.uconn.edu/.
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APPENDIX

Pseudocode for HomoloGene-PPI filter

Input: Query Protein Q, a Set of Target Proteins T1,.. Tn.

Algorithm:

� Get the homologene cluster for Q. Let it be {Q1,

Q2..Qn}.

� For each i 5 1 to n do

Get the interactors of Qi from the database. This

results in the set {Qpi1, Qpi2,.., Qpim}. Now we have the

interactor pairs as set Q0 as follows:

fðQ1;Qp11Þ; ðQ1;Qp12Þ; : : :; ðQ1;Qp1mÞ
fðQ2;Qp21Þ; ðQ1;Qp22Þ; : : :; ðQ1;Qp2mÞ;
: : :;

fðQn;Qpn1Þ; ðQn;Qpn2Þ; : : :; ðQn;QpnmÞ
� Remove from Q0 all pairs that are not of the same spe-

cies, to get Q@.
� For each i 5 1 to n do

Get the homologene cluster of target protein Ti. Let it

be {Ti1, Ti2,.. T1m}.

For each j 5 1 to m do

Check if there exists a pair in Q@ such that Qpxy 5 Tij.

If yes, (Q, Ti) passes the filter. Else it fails.
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Pseudocode for Similarity-PPI filter

Input: Query Protein Q, a set of Target Proteins

(T1,..Tn), Threshold t, PPI Databases with interactors as

{(I1, I1
0), (I2, I20).. {Ix, Ix0)}

Algorithm:

� Blast Q against all the entries in the database. Get all the

entries within the threshold. Let the resulting set be S{s1,

s2, s3.. , sn}. (S has, say example, {I3, I7
0, I15, I19, I340,...})

� For each i 5 1 to n in S do

Get the interacting pair of interactors from the

database. Say if the interactors is I1, then get I1
0. The

resulting set of all the partners of interactors in S be S0.
(Now S0 has entries {I30, I7, I150, I190, I34,...})

� For each i 5 1 to n do

Blast the target Ti against S
0.

If the score is within the threshold t, (Q, Ti)

passes the filter. Else it fails.
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